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ABSTRACT

In a previous paper [1], the steady-state behavior of a finite queue

which accepts batch poisson inputs and received service from servers operating

in synchronous mode was studied. An analysis was successfully completed via

the application of the Residue theorem in complex variables. This work

extends the study in [1] to include the effect of routing and buffer sharing.

Upon the arrival of a batch each customer determines its route independently

according to certain probability distribution. Buffer sharing with minimum

allocation studied in [5] is also considered. Results obtained include state

probability, blocking probability, delay, and throughput. Validity of

analysis has been verified by computer simulations.

-1-
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1 . INTRODUCTION

In a previous paper [1] Chang and Chang study the steady state behavior

of a queueing system under the following conditions.

1

)

Customers arrive at the queue in batches according to a Poisson

process with mean rate \ batches/sec.

2) Each batch carries a random number of customers. The size of each

batch is a positive integer^valued random variable which may follow otherwise

any arbitrary probability distribution.

3) The system provides a capacity of accomodating N customers.

4) Customers receive services from m servers in the manner of

first*come^f irst-served. Each customer requires a constant service time of T

seconds. The servers operate synchronously in the sense that m customers can

be removed form the system constantly every T seconds.

5) Upon the arrival of a batch if the remaining space is not enough to

accept every customer in the batch then the entire batch will be completely

rejected.

The system described above is an approximate model of a packet switch in

a computer communication network. Although the problem is combinatorially

very complex, it has been successfully solved via the application of the

Residue theorem in complex variables. In a separate paper [2], an alternative

approach called minislot approximation was introduced to solve the problem.

In a practical system such as computer communication network mentioned

above, a packet switch may have several output channels and packets may have

their own preferences in selecting an output channel. In order to make the

model more practical and the results more valuable, part of the purpose of

this study is to extend the work in [1] to include the effect of routing. In
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other words, in addition to the above assumptions, should a batch be

acceptable each customer of the batch decides from which server to receive

service independently of the other customers acording to a specific

probability distribution. We shall use rj to denote the probability that a

customer will be routed to server i. Clearly, £ rj < 1 and r-\ + ... +

rm = 1 . This type of routing is usually referred to as random routing in the

area of computer communications.

The purpose of buffer sharing among customers routed to different

outputchannels is to achieve efficient utilization of buffer. Several papers

[3] '" [5] have discussed this problem. It is pointed out in [5] that sharing

with minimum allocation (SMA) performs better than complete sharing (CS) when

traffic is high. In CS the entire buffer is accesible by all customers. In

SMA each user has a reserved area which can be accessed only by customers

routed to that server. In addition to the reserved region there is still a

shared region. This work also tries to examine the effect of SMA on the

behavior of a finite queue. For convenience we study the problem in which

each server only has a reserved space capable of holding only one customer.

Fig. 1 depicts the conceptual model of such a system. We believe the results

can be modified to the situation where servers can have reserved areas of

different sizes.

The approach using the Residue theorem proposed in [1] will again be used

to obtain results such as state probability, blocking probability, average

delay, and system throughput. However this approach has to be modified. The

modification is necessitated by routing consideration. For example the

derivation of state transition probability via the Residue theorem not only

depends on the remaining buffer space but also on the set of busy and idle

servers. This will be demonstrated in Section 2.

-3-
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Section 3 of this report discusses the extension of this work to unequal-

rate servers. Conclusions are made in Section 4.

Throughout this work ergodicity of the process is assumed so that

essemble^averages can be replaced by time-averages.

-A-
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2. MAIN RESULTS

Let TTfo denote the probability that the system is at state b = (b^ , . ..,

bm ) at the beginning of a time slot. In b = (b|, ..., bm ) such that b = b-j +

... + bm , b^(>0) represents the number of customers which are to be routed to

server i while b denotes the total number of customers in the system. Let x =

(x-j , ... , xm ) such that each x^ is nonnegative integer and x^ + ... + xm >

be an arriving batch of size xi + ... + xm in which x^ of them are to be

routed to server i. Suppose N = 10, m = 2, and b = (1,2). Also suppose

three arrivals (3.1) , (2,6), (1,1) (according to their order of appearance)

have occurred within a slot. The first arrival (3.1) is acceptable and will

lead the system state from (1,2) to (4,3). The second arrival (2,6) must be

rejected since 2+6+4+3=15>10. The last arrival (1,1) is acceptable

since 1+1+4+3=9>10. In other words if b = (1,2), the arrivals

(3,1), (2,6), (1,1) all together result in four and two customers effectively

accepted by the system and to be routed to server 1 and 2, respectively. We

use a = (4,2) = (3.1) + (1,1) to illustrate such an event and use Pa.t, to

denote the corresponding conditional probability. In general, a = (a^

am ) in which each a^ is a nonnegative integer such that a = a-| +...+ am > 0.

Let n = (n-| , ... , nm ) denote the system state at the beginning of the

next slot. Then the steady^state behavior of the system is characterized by

( 1 ) * ' 1 *bPa»b
n (a, b) eAB(n)

where

(2) AB(-) = {(a, b) <. (b. h 1)
+

< n it

-5-
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T (b. » 1)
+

< N - m,

i = 1

a. = n. " (b. - 1)
+

,111
a + b £ N

:

m

and I (a. +b. *1) + <N-m}.,ii *
1 = 1

In (2),

(3) (x)
+

=

x if x >

if x <

Physically, AB(n) represents the set of (a, b) such that the system can

transit from b to n via the acceptance of a. In (2), (b^ » 1)
+ represents

the number of customers (among the initial b^) remain in the system at the

m
end of the slot. 22 (b. ~ 1 )

+ must not be greater than N um since at most m

1-1
l

customers can be removed from the system per slot £ (b - D +
- N -

1-1

occurs when b = N, i.e. system is full, at the beginning of a slot and all

servers are busy during the slot, (aj + bj « 1)
+ represents the number of

customers which stay in the shared region and to be routed to server i. For

example if bj_ = and a^ = 1 , then this customer will be placed in the

reserved area and there is no customer waiting for server i in the shared area,

6-
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m

Since the shared area is of size N-m, we have Jj (a. +b. >-1) + <;N-m
i = 1

1 l

in (2).

ir. in (1) must be solved together with
D

(4) I *
b

- 1

b e BB

where

(5) BB =
{ § <. b. <; N *• (m * 1) , 1 £ i < m, £ b £ N }

Physically, BB denotes the set of feasible states. In (5), N * (m - 1)

represents that the system can have at most N - (m -
1 ) customers to be

routed to server i, 1 £ i < m.

In order to solve (1), we need to find pa , ^ first. Let x^ be a sequence

of batch arrivals arranged in the order of their appearances in which x^ =

( x i1 > x i2» • • •

»

x im) • We have explained previously that x^ represents the

number of customers in the ith batch of {xjj which select server j to receive

their services. Next we use B and I to denote the set of busy and idle

servers, respectively within a slot. A customer which arrives within a slot

must wait till the beginnning of the next slot to receive service even if the

server it selects is idle when it arrives. This is because the servers are

running synchronously at the same speed. The duration between the arrival of

a customer and the beginning of the next slot will be called residual period

of this customer. Let R denote the size of the remaining free buffer

-7-
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including both the shared and reserved region at the beginning of time slot.

Let I B
|

and
|
I

|
respectively denote the number of busy and idle servers.

Clearly, R >
|
I |

and R -
|

I
|

represents the size of free buffer in the

shared area.

The approach using the residue theorem proposed in [1] can be used to

obtain pa , ^. However it has to be modified.

Example 1. Suppose R = 5, m=3, B =
{ 2 } , and I = {l, 3}. This means

the shared region can take no more than 3 customers. Thus in {xjj

{(4,3,0), (0,3,1), (1,^,2), (5,1,2), (0,0,1), (0,3,0)} only (0,3,1) is

acceptable and the rest are rejected. The arrival (0,0,1) is rejected since

after the acceptance of (0,3,1) not only the shared region becomes full but

also the buffer reserved for server 3 is occupied. Thus the only customer in

(0,0,1) which can only be placed in the shared region gets rejected. {(0,3,1)}

is called an acceptable pattern when R = 5, B = {2}, and I = {1, 3}. {(0,3,1)}

further divides {xj } into two subsequences C = {(4, 3, 0)} and C1 = {(1, 4, 2),

(5,1,3), (0,0,1), (0,3,0)}. C and C-j will be called blocked subsequences of

l*iN

In general, we use {a-| , ..., an } to denote a general acceptable pattern

such that - = (a, a, _ . . . , a. ) and a, = a. . + ...+ a. . Let v. and u.
k k1 , k2, km k kl km 11

respectively denote the number of unoccupied reserved buffers and the number

of unoccupied shared buffers before the acceptance of a i+1 , i = 0, 1, ..., nM

.

For i = n, un and vn are defined similarly except after the acceptance of a
Tl

.

Use R^ to denote the size of the remaining free shared and reserved buffers

between the acceptances of aj and a i+1 . Then any arrival pattern {xj } which

contains al » ••• a n as a subset may have the following blocked subsequences

-8-
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C , £1 , ..., Cjx such that Cjj e Cj^, Cjj = (Cjji ... c^) with c^ = c^ +

... + Cjj m satisfies

(6. a) c j > R = R or the number of unoccupied reserved buffers selected

by customers specified in c
j

is less than c j ^ v for v + 1 < c j <_

uo
+ vo * Ro

i

(6.b) c. . > R. = R * T a, or the number of unoccupied reserved buffers
1J J k»1

k

selected by customers specified in c^j is less than Cjj - v^ for v^ + 1 < c^j

<_ Cy < uj + v^ = Rj, i = 1, ... , n.

Define for i = 1, ..., n and after the acceptance of a^

(7) B
i

=
ij

I

server j for which the reserved buffer is occupied by some

customer

}

(8) 1^ = {j |
server j idle and its reserved buffer is still empty}

Clearly, Bj U Ij - {l, 2 m}, u
i

=
|

I
i \

, and w
i

=
| Bi |

. Next, let B =

B and I = I where B and I have been defined previously to be the number of

busy and idle servers, respectively, at the beginning of a slot. Also define

qj (x, Rj_, B^, 1^) to be the probability that an arriving batch of size x is

rejected because the number of servers in 1^ selected by customers in the

batch is j which is less than x - vj . For example

(9) q (x, R B , I ) = ( £ r ) , x > v + 1

it Bi
* 1

while

(10) q (x, R B I ) « £ [( £ r )

X
- ( £ r )

x
]

-9-
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£ t(
r

)

x
M % < x » v B

i»
t k l)]i x > v

i

+ 2

kelj UBj {k}

In general,

(11) q (x, R B.I-)- £ C (E .

J'

- L ^
k

(x
'

R
i» V l*i» ••• k

j^ )]
'

x I v
i

+
J

+

where

(12) KK. = {k k.) ' each k e I. and k , ..., k. distinct}
J l J x, 1 i J

Eq. (11) above can be easily encoded into computer program., Our expreiences

show the enumeration of q-j(x, R 1( B^, Ij) does not require too much computer

time.

Let Bx denote the probability that an arriving batch is rejected between

the acceptance of a± and a 1+ i
for i = 1, 2, ..., n-1 . 8 and Bn resepctively

denote the above probability before the acceptance of a-| and after the

acceptance of a^. Then from (6. a) and (6.b)

R x - v - 1

(13) 6 = g
Ro £ g

x
[ £ g

j
( x

« V V V ]

x = v + 1 j = o

-10-
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where gx denotes the probability that a batch contains a total of x customers

and

(1*0 g
x " g

x + 1

g
x + 2

represents the probability that a batch contains more than x customers

Next

(15)

In general

R x i- v - 1

1
= VJv,., g

«
[ E

1
r- q

j
(X

'
R T b t V ]

(16) 8
i

K
R E

1

1 x = v
i

+ 1
x j=0

x c v. - 1

g C E 1

Qj ( x, R., B., I.)]

Let Na be the random variable representing the number of batches arrive

in a slot and let AP stand for acceptance pattern then

(17) P[AP = (g 1f g 2 , ..., aj Na = k]

n

n [g a ( ) .

i=1
a

i a.,

0, if k <

. (

a
l 2_j ij) n (r ) 2^ ° 1 n

1=1 j=i
im J

j +. ..+j = k*n

n , if k n

where a-| ... + an £ R. Via the approach using the Residue theorem [1] we

obtain

(18) P[AP = \a_
y

, a 2 a^}
|

Na = k]

11
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= CAP
2tt1 = c

jSo
(z ^ V

dz

where c > 8 t B-| , . •• Bn and

n

(19)

a.
1

CAP = n [g Q ( ) ... (

4 a . a .

.

i=1 l ll

a.
l

ij m a. .

ij

lm

) n (r.)
iJ

]

j = 1

J

(throughout this report the i assoicated with 2iri denote /""T, otherwise it can

be used as a subscript or superscript.) Finally,

(20) P[AP = {aj , a2 , ... , a^}]

= £ p £ AP * i
a

1
anl ' Na = k] fk

k=0

CAP

2iri

F(z)

z = c

jSo
(2 - V

dz

where f k = P[Na - k] and F(z) = f + f-|Z + f 2z
2 + ... is the probability

generating function of fk . The derivation of (20) is similar to that in [1

]

where routing is not considered.

Define

(21) 4»a » * ( ai a 2 ... am )

=
{ AP = {ej , ... e^}

|
e
:

= (en , en , ... e im ) ,

-12-
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n

I
k-1

1

1

£ e
Wi

a
i» 1 £ J £ m

» 1 $ n < R I

We use
|

H*a |

to denote the number of APs contained in Va . Similar to [1], ^
can be obtained recursively as follows. If AP = je-j , ... , e^} then define

(22) AP * e^+T = {ej e^, e^
}

Let 4* =
{ AP., ... , AP } where I is an arbitrary positive integer and e an

arbitrary acceptable batch, then define

(23) ¥ * § =
I
AP

1

* e, ..., AP^ * e}

The definitions of (22) and (23) are taken directly from [1]

13-
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Example 2 Suppose m = 2

(1,0)

f

*

(0,1)

(2,0)

(1,1)

1(1,0)}

{(0,1)}1

{(2,0)} , |(1,0), (1,0)}}

Vo) * (2 ' 0)} {f
(o,D * (1 ' 0) U

1(1,1)} , {(1,0), (0,1)} , {(0,1), (1,0)}}

f
(o.o) * (1 ' 1)} ( *0.o) * (0 - 1) l l*(o.n * (1 ' 0)

V
(2 1}

= i((2,1)}} {{(2,0), (0,1)} , {(1,0), (1,0), (0,1)}}

{{(1,1), (1,0)} , {(1,0), (0,1), (1,0)} , {(0,1), (1,0), (1,0)

{{(0,1), (2,0)}} {{(1,0), (1,1)}}

>(0,0) * (2 ' 1)
>

U
1^(2,0) * (0 ' 1)

^
U

1*(1,1) * (1 ' 0)

U (f
(

* (2,0)} U If
( j

* (1.1)1

In general, we have

(24) * * *
a (a , ... , a )— m

-14-
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u

1 m (ai , .... am )

'(a," k 1f a - k a - k ) *
(k

1

k
m

)

where

*(a , a ) - |(k , k ) I < k. < a. < k < a , but
1 m 1 m ' —

i
— 1 — m — m

(k
1

k
m

) * (0, ... , 0)}

Now let us find P [4»a ].

Example 3. Let m = 2. From our previous discussion of (13), (15) - (16)

we have

(26) p[Vo) ] = 271 / (T%) dz

A
0Q

(z) F (z)

2wi J B
0Q

(z)
dz

where Aqo (z) 1 »
B00 ( z )

= z ~ &00» ancl ^oo can be obtained from (13)

assuming Rq, Bq and I are known.

If (a-| , &2^ =
( 1 »°) w© have

1 i
g

1

r
1

F(z)

(27) PCy,, „J = ^r-r ti ' \ , s—r dz
(1,0)

J
2tt1 (z - B

0Q
) (z - B

1Q
)

1 I
A
10

(Z) F (z)

dz
2-rri T B

1Q
(z)

15-
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where A 10 (z) = gir lf B 10 (2) = (z ~ Boo) < z J
^10^ * In (27) » &00 and B10 can

be obtained from (13) and (15) under the assumption that Rq, Bq, Iq are known

and {(1,0)} is only acceptable pattern.

Similarly if (a-| , a2) = (0,1) we have

/-A (z) F (z)

< 28) P"(0,O ] 4| B
Q1

(z)
dZ

where A -|(z) = g^, Bqi (z) = (z " 0oo)( z " s 01 ) • In (28), Boo and &01 can

be obtained from (13) and (15) assuming Rq, Bq, Io are known and {(0,1)} is

the only acceptable pattern. If (a-| , a2) = (2,0), since 4* (2 0)
= U(2,0)}} u

{f(l
t
Q)* (1,0)} we have

(29) P[¥
(2 Q)

] = P[AP = {(2,0)}] +P[AP = {(1,0), (1,0)}]

_L 1
A
2Q

(z) F(z)

27Ti / B20 (z)

dz

where

a r^ 2
a r 1

B
2Q

(z) g
i

r
i

A
10

(2) B
20

(z)

A (z) = g r. A-.(z) -^

—

, . .
—

r +
20 2 1 °° B

00
(2) (Z - W B (z) (z- B

2Q
)

I; k
i

k
2 (

k
i

+ k
2) »;- t„o B

;o
(z)

°V k
2
)£

*(2,0)
k

1

* k
2

Pl 2
' Vr,,0 (Z) (zt 8

20 >

-16-
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B
20

(Z) = iZ " V (ZU 6
10

} (Z " 6
20

)

2

n n (z « b. .)

i = o j = o 1J

Suppose Rq, Bq, and Iq are given, 820 can be obtained either from B1 of (15)

by assuming AP = ((2,0}} or from 82 of (16) assuming AP = {(1,0), (1,0)}.

In general, for m = 2, we have

r
A
a , a (z) F (z)

(30) P[Y, .] -L- A —

1

1 _ dz
(a, , a_) = 2tti f B„ „ (z)12 J a

i
'

a
2

where

(3D Aa,, a
2
(z) -

(k
E

kj J, ^ (

k
,^

*
2 , r^ ^ 4

_
(„

£ !
' 2 1

B
(a,, a

2
)

< z >

B,
, ,

> (z) (z - 8 )
(a

1

- k
1

, a
2

- k
2

) a^

(z ^ B
k , k

:

(32) V a
2

)

U) =

\, k
2

EBTA (ar V

in (32), BTA (a, , a.,) = [fi^ ^ ' ^ k, < a, , < k
2 5 a, , and all 8^ ^

must have distinct values}. In other words, there could be several

combinations of k-j and k2 so that their values of 8 are identical. In this

-17-
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case, we select only one of them as representative. This can be explained as

follows.

In the process of combining all the related rationals to reach

A (z)/B (z), it could happen that (k , k ) * (k , k ) but
a , 3p a.. , a_ i d. \ d

8, =8, ,
. In this case we only let the factor (z - 8, ,

)

k , k
2

p
kr k

2
k

1

, k
2

appear

once in B (z). Thus, BTA (a., a„) used in (32) and defined in the line
a. , a

2
12

following (32) is for this purpose. Notice that <I>, * has been defined in
va . , a_ )

(25). In practice, the value of 6. w
which appears in B (z) can be

obtained from B. of (15) by assuming R , B , I are given and AP = {(k , k )}

Finally.

^§ b (a
1

, a
2

) , b

: P [f(a
T a

2
}

I

R = N " b
'

B = B
'

: = I]

Throughout this example, all the integrals are assumed to be carrried out

along a circle whose radius is bigger than any of the poles.
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(34) P[f_] = P[*,_ _ x]
d Vol,..., dm ;

1 1 7 j ,
/" "m x ,"2 "'" "m N ,"m

y k *

k, +. . .+ k k^ + . . .+ k k

\ •••".<
k, »

(
k, ->•••<„- >

2_ *a 1 1 2 m

k, k_ k

r, r» . .. r A
, „ , (z) F (z)

1 2 m aj - k
1

am « km
B
a - k., .... a * k (z)

(Z " 6
a.a. ...a )mm 2 m

, /" a. , . . . , am (z)F(z)
1 m

dz

dz

2-ftI f B (z)
y a . , ...» a

m

where K = (k^, ... , km ) and

<35' *a a («) " £ V + ... +k (
™>

<

k +. . .+ k k +. . .+ k k
m N , 2 m N , m

)...( )

1' *" ~m ** "m k. k. k
k £f 1 2m- a

k k

r, ' ...r
m

A , _ ,
(z) • B (z)]

J m aj - kj , ... am - km au ... , am
[B

a, -k, a ^ (z) (z "
\. ... a

)]11 'mm 1 m

TT
(Z * 6

k k
}

(36) B
a

(z) = " K
1 m

a
i

' •" a
m B. . e BTA (a , ... , a )

k , . . . k 1 m
m

In (36),
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(37) BTA (a .... a ) = {b
r k

" < k. < a. and all 8
k1'm 1 m

mus t have distinct values}

Also, B. . can be obtained from (15) by assuming R , B , I are known
k

1 m

and AP = |(k , .... k
m

) }, i .e.

,

J^i x - v - 1

(38) 6
k

= gR
+ V g[ £ q (x, R B I )]

K
1 m

K
1 ,

X
j = J ''I

x = V-| + 1
J

where

m

(39a) Rl - R
Q

- £k.

(39b) B = {b. U |1 • u(k.), 2 • u(k_) m • u(k ) } U {o}} - {o}

(39c) I - I * (1 • u(k,), 2 • u(k ), .... m • u(k )
u dm

(39d) v - r ft I i I

In (39), u(x) denotes the unit-step function, i.e.,
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1 if x >

(40) u(x) =

if x <

Notice that {o} and - {o} in B-| is to prevent from including and B-| since

servers are numbered from 1 to m.

Finally, pa , ^ can be evaluated as follows

C*D Pa-ti
= p[ ^al B = B, l = I, R = N - b]

This is because at the beginning of a slot, the initial state b is completely

specified by the set of busy servers B, the set of idle servers I, and the

size of the remaining free buffer space N-b. To evaluate the probability that

a is accepted is equivalent to evaluate 4*a based on B, I and N*b. Once Pa ,^

is obtained, (1) can be solved. The finiteness of the queue guarantees the

existence of the probabilities irn regardless of the value of A. The

minislot approximation porposed in [2] can also be used to obtain pa ,t>.

Now let it denote the probability that the system is at state n at t

seconds after the beginning of a slot, clearly it satisfies

(42) Tr

fc

= V *k P
t

kn ^_j b a,b

(a, b) e ABT(n)

subject to

(43) 2^ u
t

= 1

n e BB -

where ABT(n) = |(a, b)
|

bj < nj and aj = rij - bj } and BB has been defined in
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(5). Also in (42) p is the probability 3 has been accepted into the

system if at the beginning of the slot the system state was b. Let denote

the beginning of a slot and define

(44) tt = 1 Tr

u
dt

* 1 f
T

t

2 t Jo S

Then

(45) it = V ttk p .

n i—i £
K
a, b

(a, b) e ABT("n)~

subject to

r / =i£ 'n "

n e BB

In (45)

(w i* -H
T

i* dt

/;

T
A
a
(z)F

t
(z)

2ni T B (z)

o £

dz dt
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2ni Ty b.

(z)

777

/•T

F (z)dt dz

2iTi T

f A (z)
a

B (z)
a

^At(l-z) .. ,

e dt dz

.JL-L.J
AT 2iri

J

A (z) [e
XT(zM)

- 1]
a

i

a
m

B
a

1

a
m

(z) (Z"1)
dz

R
Q
-R, B

Q
-B, I

Q
-I

The derivation of (47) is similiar to the derivation of pa ,^.

We use B to denote the probability that a batch arrives at t (0,T) is

rejected. Also we use B^ to denote the average blocking probability of a

batch. Clearly,

(48) B
b

=
T /:•»• dt

^ * ( - "
(n)

«"^n)-1
= L \ gN-n

+
Li g x

[ £ qjCx, R(n). B(n), I(n))]

n e BB x=v(n)+1 J
~

where
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(49a) B(n) = {{ 1 • u( ni ), 2 • u(n2 ) m • u(nm ) } U { } } * {o}

(49b) 1(n) = {1 m} u B(n)

(49c) R(n) = N " b

(49d) v(n) = R(n) -
|
I(n)

|

Define a test customer to be a randomly selected customer. Clearly, the

probability that this test customer is drawn from a batch of size x is xgx /

(g< + 2g + ... ). Let B be the blocking probability of a test customer t

seconds after the beginning of a slot and

jiB
o "t I*

B
c

dt '

then

(50) B =
c

1

N
#

co R( n )

= - y tt
{ xi xg + y^g*

n=0 x=N-n+1 x=v(n)+1

x-v(n)-1

[ J^ <M X
»

R(n) ' B(n) » I(n >]
j=0 J

where

(51 ) a = /_\ xg
*-i x
x=1

represents the average batch size.

Let L
q

denote the average number of customers waiting in the system, then
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(52) L - 2 C ( S a
i

+ (b
i

" 1)+
}

^a b
] n

bQ
b e BB a e AA(b) ~ J J -*- -

where AA(b) denotes the set of feasible a if the system was initially at b and

can be expressed as follows

m

(53) AA(b) = {§ < a < N - b, < ]T (a. + b. » 1)
+

.< N - m}

J-1
J J

m
The reason that V* (a. +b.-1) + .<N-m has been given in the explanation

j-1
J J

of (2). Next let Lq,^ denote the average queue length associated with server

k, then

£ E (a (b -1) +
) P*

e BB L a e AA(k)
k k a ' D J

^ L
q , k

- 2^
oo „f^_ (a

k
+ (b

k
Mi)*) P

a>b
jn

b

We use Xq,^ to denote the effective input rate, expressed in number of

customers per sec, to server k, then

2-» n
n [ £ &

t
AR (Q. i» k )](55) A

e k
= X

e
' h*BB i =

where AR(n, i, k) denotes the average number of customers accepted by server k

if the batch contains i customers and the system is at state n when the batch

arrives. In (55), i ranges form 1 to N - n since it is necessary for a abatch

not to contain more than N * n+ 1 if that batch is to be accepted. AR(n, i,
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k) can be accepted as follows. First we define an indicator variable IV(k) as

follows to indicate whether k is in I(n) of (49. b)

!1
, if k 6l(n;

, elsewhe

i)

(56) IV(k) =

ilsewhere

Using the notations defined in (49) we obtain

Y. J(J) r.
j

(1 - r. )

i-j
, if i - v(-) IV(k)

j-1
J

v(n) + IV(k)

(57) AR(n, i, k) =( £ J(}) r,J 1(1
Mr. V J -

J-1
J

i - v(n) -1 * IV(k)

E [q
x
(i ' J '

R( K B( )f I( )]

x=0

, if v(fl) + IV(k)
;

: i < v(n) + I(n)

This can be explained as follows. When i : v(n) + IV(k) then the batch will

definitely be accepted. Therefore in this case the average number of

i

customers accepted is simply £ j(.) r (1 - r ) . However when

j = 1
J

k k

v(n) + IV(k) < i < v(n) +
|
I(n)

|
then the batch of size i could be rejected

due to improper routing. The term £ qx (iHJt R(n), B(n) , I(n)) accounts for

this effect and must be subtracted.

Once Lq tk an(j \ Qt ^ are obtained, the average waiting time of an accepted

customer routed to server k, Wc ,^, can be obtained from Little's formula as

follows

.

-26-



www.manaraa.com

e,k

This holds at steady state.

Then the average delay of an accepted customer routed to server k is

(59) D
0,k " W

0,K * T

Let D c denote the average delay of a customer, then

m

(6o) d - y; d ,
r

c £-* c,k k
k = 1

Although the derivation of Dc is done through (58) via Little's formula,

the average batch delay D5 has to be obtained in a different manner, This is

of course due to the variation in batch size. But more importantly, customers

in the same batch can be routed to different servers. This complicates the

derivation of D5.

Let D w „ denote the average daly of a batch of size i. Then

<6D "6.1- S, „«b»y S \ t ty'")*1*0.5K
(a, b) e AB - -'-' k e KK

1

1 1 1

where

I
< < £ + <

(62) AB = {(a, b) , 0-a + b-N-*1, 2^ (a + b »• 1) - N - m

j-1
J J
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In (61), the 1 corresponds to 1 slot of service time while the 0.5 represents

the average residual period. The residual period of a customer is measured

from the instant of its arrival till the beginnning of the next slot. Since

arrival could occur anywhere within a slot, the average residual period turns

out to be 0.5 slots. The KK^ in (61) denotes the set of serves which

guarantees the acceptance of the batch of size 1. Obviously, if there is at

least one empty buffer in the shared region then KK^ = {l, 2 m}. If the

shared buffer is already full, then KK-] is simple the set of servers for which

their reserved buffers are empty. For D^.2 we have

(63) D = Xj it
p*

I y> max[a + (b - 1)
+

+ d + 0.5,
D ^ (a,b) e AB

D -'- 2-r 1,2
k

1

k
1

k
1

(K ]t k
2
)^KK

2

a + (b - 1)
+

d + 0.5]r r }

•^ sj o o 1 O

where d^ denotes the number of customers in the batch of size 2 which select

server i and

(64) AB
2

= {(a, b!
< < <O-a + b-N-2, I (a.+b.^1) + -N-m

j-1
J J

(65) KK
2

= {(k^ k
2

) servers k and k are chosen by the batch and

m

J] (a. + b. + d. - 1)
+

< N - m
}

i=1
x 1 l

In general, we have
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(66) D = Z-r \ Pa,b
{ ^ max [a + (b - 1)

+
+ d + 0.5,

D,X
" (a,b) e AB^ (k

}

k^e KK^
K

1

K
1

K
1

where

.. , a + (b - 1)
+

d 0.5] r ... p
;K

l
K
l

K
i

k
1

k
fc

(67) AB = {(a, b) , < a + b < N '- I, T\ (a . + b .
- 1

)

+
£ N * m+ b < N - 2,, V (a. + b .

- 1)
+

and,

(68) KK = |(k , ... , k ) servers k , ... ,k are chosen by the batch and

m

Z(a. + b. + d. "
1

)

+
< N ** m}ill - J

i=1

Finally, the average batch delay is given by

(69) D
b

-
T
_L_ I g

z
D
b>1

Concerning delay analysis, most papers in the literature concentrate on

customer delay, mainly for simplicity. For customer delay, relation between

delay and throughput or input rate can be established usually through Little's

formula. However, no such relation is guaranteed for batch or group delay.

The reasons for the problem studied in this report are variation in batch size

and routing effect. Similar phenomenon is also noticed by Whitt [6] and

Halfin [7].
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The system throughput S is given by

(70) S = 2^ £ u(b ) tt

b e BB k = 1 -

where BB is defined in (5).

We have carried out extensive numerical calculations based on the

results obtained here. Fig. 2"5 are part of them. In these examples we

assume m = 3, N = 8 and r-j = r2 = r-^ = 1/3. Two batches size distributions

are considered in each of these examples. One is the well known geometric

distribution with p = 0.5 or a = 2. The other is specified by g-j = gg =

o.267, g2 = 87 = 0.133, g3 = g6 = 0.067, and gy = g5 = 0.033- Since the

latter has a shape looks like a suspension bridge this distribution will be

referred as SB for convenience.

In each figure, the curve labeled by G corresponds to geometric

distribuion while the one labeled by SB corresponds to the suspension bridge

distribution mentioned above. In addition to numerical calculations we also

carry out simulations to support our analysis . We observe in these figures

that the agreement between analysis and simulation is extrememly good.

Fig. 2 shows Bfc vs X. First, we observe that in both G and SB, B^ is an

increasing function of A. This is intuitively reasonable. As a matter of

fact, Bb approaches 1.0 as X approaches infinity. The rate of convergence

depends on the actual distribution of the size. Second, we observe that SB

distribution exhibits higher blocking probability than G. This is explainable.

Since the size of a batch in SB is restricted to occur in the range between

one and eight g-| = gg = 0.267 is considerably higher than the rest. On the

contrary, for geometric distribuion with p = 0.5, gi = 0.5 and the
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distribution is strictly decreasing in batch size. This then implies SB had

higher blocking probability. Third the gap between G and SB closes up as X

increases. This is reasonable since as X becomes big enough the system

occupancy is high and most of the arrivals will be rejected regardless of

their actual size distribution.

Fig. 3 and 4 show D c and D^, respectively, versus X. For G distribution

we observe both D c and D^ increase as X increases. This is reasonable.

However, for SB, D c and D5 first decreases then increases as X increases from

zero. This can be explained as follows. As X is low, almost every arrival

can be accepted. Since the batch of size 8 has a good chance of entering the

system when X is small, the overall delay is high. When X gradually

increases, only short batches can enter the system thus the average delay of

the accepted batches drops. As X is high enough, system is full almost all

the time thus the delay again is high. Notice that the disagreement between

analysis and simulation is less than 5%.

Fig. 5 shows system throughput versus X. Here we observe G has higher

throughput. This phenonmenon is consistent with Fig. 2.
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3. Extensions to Unequal Rate Sservers

Although routing has been considered in Section 2, the servers there are

still assumed to be operating at the same speed. In practice, servers

attached to the queue may run at different speeds. In order to move one step

forward in the modeling of a packet switch, the purpose of this section is to

extend the results to include servers possible running at different rates.

In this section we assume when a customer is routed to server k it will

take the server (or transmitter) ^ seconds to complete its service for this

customer. Due to the synchronous nature of servers, the behavior of the queue

can be described on the basis of t-second slots where T is the greatest common

divisor of A] Am . In addition to the random routing considered above

we also consider another type of routing called idle^server-f irst (ISF)

routing which is believed to offer better performance. In ISF routing, idle

servers or servers with no customer waiting will be considered first upon the

arrival of a packet. For both types of routing we have established

state^transition equations, obtained state transition probabilities, and

derived results such as blocking probabilities, delays, and throughputs, etc.

Based on these results we have also carried out extensive numerical

calculations. The validity of analysis has also been verified by computer

simulations. Figures. 6-9 show part of the numerical results.
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4. Conclusions

We have in this work studied the effect of routing and buffer sharing

with minumum allocation on the behavior of a finite queue which receives batch

Poisson inputs and provides multiple servers running synchronously at the same

speed. The main contribution of this work is to obtain analytical results for

system state probability, blocking , delay and throughput. The validity of

analysis is not only verified by simulation but also supported by intuitive

reasonings. The work reported here is an extension of [1],

We have also extended the model to include unequal rate servers.
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